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INTRODUCTION

Throughout numerous fields, most especially within biomaterials, nanotechnology and solid 
state physics, atomic force microscopes are used to create three-dimensional images of 
samples. These particular microscopes can be used to deduce various properties of the 
sample material [1] – at nanoscale – with incredible accuracy.

However, these microscopes must be calibrated correctly in order to operate as expected. 
Currently, the calibration process is somewhat unsystematic and requires a great deal of 
determination to master. 

In this research, various Python code blocks have been written in order to: 
• Calculate the surface-tip separation force from the ‘12-6’ Lennard-Jones potential;
• Plot the surface-tip separation force vs. the separation of the tip from the surface;
• Calculate the numerical integrals representing the frequency shifts in 𝑧𝑧𝑧𝑧;
• Plot projections of frequency shifts as a result of the cantilever motion.
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METHODOLOGY

To establish the motion of the cantilever clearly, the first point to note was that the 
cantilever acts as a simple harmonic oscillator. By definition then, the cantilever obeys 
Hooke’s law (𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = −𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) – that is, the cantilever can be modelled simply as a spring.

In order to further simplify the model initially, we assume no other forces other than that 
from the surface-tip interaction act on the cantilever. To find this force, we use the ‘12-
6’ Lennard-Jones potential
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and differentiate with respect to 𝑧𝑧𝑧𝑧. Taking the negative of this derivative finds the 
surface-tip interaction force by definition of potential energy,
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where the positive and negative terms represent the repulsive and attractive regimes of 
the force respectively. 

To obtain a more realistic plot, the above force can be summed with another force 
derived from the surface energy of a (periodic) crystalline surface. Using the sample 
force,

𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑧𝑧𝑧𝑧 = 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧[cos(𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘) + cos(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)] with 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏 ∈ ℝ

we can obtain a sample plot (see Fig. 1). However, any force could be used instead of 
the above.

Now the model is well-established, we calculate the frequency shifts and plot the 
projections of contour maps.

The oscillations of the cantilever are forced – driven by an excitation signal – which can 
be described by the second-order differential equation
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This can be simplified, since the external forces can be assumed to cancel any 
damping. The simplified differential equation is solved using a Fourier series for 𝑧𝑧𝑧𝑧, 
producing a system of non-linear equations solvable by the Newton-Raphson method. 
The final result is an integral, describing the frequency shifts from the cantilever 
oscillations as below
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with 𝑘𝑘𝑘𝑘 being the spring constant; 𝐴𝐴𝐴𝐴1 the amplitude of the driven oscillation. By re-writing 
the force in terms of cosine (𝑧𝑧𝑧𝑧 = ℎ − 𝐴𝐴𝐴𝐴1cos(τ)) , it is possible to compute the frequency 
shifts, iterated over some range of 𝑧𝑧𝑧𝑧 (over different distances of separation).

Using contours, simulating the cantilever tip in a straight path back and forth from the 
surface, as well as across the surface, it is possible to plot these shifts (see Fig. 2 & 3).

RESULTS

In Fig. 1 (above), we see that at very small distances, the force acting on the cantilever tip 
becomes greatly attractive – at the point of ‘contact’, the surface force becomes greatly 
repulsive before decreasing exponentially as the separation increases.

Computation shows us as the height separation of the tip from the (atoms constituting the) 
surface increases, the frequency shift decreases (as the cantilever tip enters the 
exponential repulsive regime). However, in Fig. 3 (below), the frequencies shift 
unexpectedly.

CONCLUSION
Through computation and concise code blocks, the methodology provides a framework for 
more consistent calibration methods of atomic force microscope cantilevers. The method 
could be extended further to utilise a neural network, which can machine-learn the required 
calibration for specific cantilever tips depending on the frequency shifts obtained from the 
simulated motion.

Figure 1: A graph of the separation-dependent force acting on the cantilever from some 
crystalline surface, along with the force from the Lennard-Jones potential.

Figure 2: Contour map. Moving linearly relative from one atom constituting the sample 
surface. The frequency shift from that specific atom changes proportional to the 

displacement of the cantilever tip relative to the atom (as expected).

Figure 3: Contour map. As the repulsive regime is entered, due to the nature of this 
particular crystalline surface, the frequencies alternatively shift every 20 Ångströms, 

increasing and then decreasing over this period. 
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