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Abstract: Dynamic regulatory networks of any kind evolve through time until they reach two kinds of steady-state behaviours: a) a frozen state where all components of the 

network adopt a final constant value or b) a “fluid” state where many or all components adopt a final dynamic (cyclic or chaotic) steady state. Gene regulatory networks in all organisms are known to 
adopt stable patterns of  dynamic expression regardless of external conditions matching corresponding biochemical and molecular cycles in stable cells and tissues. As gene expression is controlled 
by complex networks of regulatory interactions involving transcription factors and target genes, the extent to which the average density of transcriptional regulators per gene determines the 
dynamic fluidity of the transcriptome is not known. Here we use an in silico (computer simulated) model of gene regulatory networks to determine how density of regulatory inputs per gene 
influences the dynamic behaviour of the whole genome. We find that increasing regulatory density per gene (number of regulators per gene between 0 and 1, where density of 1 has all genes in the 
network acting as regulators) increases the likelihood of a gene regulatory network to become frozen and that maximum fluidity is attained by a narrow range of low regulatory density values.  This 
result suggests that natural selection could favour a relatively low number of regulators per gene in order to ensure dynamic stability in natural transcriptomes. 

We implemented a computer simulation of a gene regulatory network as follows:
Each network consist of a set of nodes and edges or arrows linking pairs of nodes. Each node represents a gene and each arrow
between two nodes represents a regulatory interaction.

Effect of a single regulator on the individual or cumulative expression of its targets: 
The rate of expression of each gene under the influence of a single regulator (Gi) is assumed to be to a sigmoid function of the level 
of expression of that single regulator:

Where Gi is the level of expression of the regulator; A, B and C are parameters controlling the maximum value, the inflexion point 
(threshold=B/C) and slope at that point for this function.  Note that the fi is defined in the interval [1, A+1]. This means that the 
minimum influence exerted by Gi is 1 and the maximum is A+1.

Effect of several regulators on a single target 
This model assumes that the target expression level (under the influence of a single regulator) is itself the rate f with which that 
regulator will contribute to the expression of the target, and that when several regulators act on a gene, they interact cooperatively.
IF fi is the rate of expression induced by the regulator i , the overall expression of the target (Ex) under the influence of k regulators 
will be given by:

Implementation of the study:
We simulated networks of  20, 50 100, 200 and 500 genes  varying the  regulatory density of each network and measuring the 
fluidity of each network after 300 dynamic iterations (or time points).
Regulatory density is defined as the total number of regulatory interactions divided by the maximum theoretical  number of 
regulatory interactions in a network .
As maximum number of regulatory interactions equals N2.  
Density is defined as D= Mean number of Regulators per gene / total number of genes.
Fluidity was measure as the proportion of nodes that did not adopt a frozen (constant) state after 300 time iterations.
For each measurement 50 independent networks were generated and each network was simulated starting from 20 independent 
initial states.

Results:

Abstract

Conclusion:
Results show that there is an optimal density (average number of transcriptional regulators per gene) at which the gene regulatory network attains maximum fluidity. While the 
window of optimal densities appears constant, it slightly shifts towards lower values as network size increases. 
We propose that natural selection might have favoured an optimal average number of transcriptional regulators per gene, to optimise the dynamic stability of the gene regulatory 
network. 

This model should, in principle, allow us to predict the average number of transcriptional regulators per gene in natural genomes. 

While further studies are needed to ascertain the optimal density of transcriptional regulators in large genomes, such as those of humans, taking, the largest networks tested (N=400) 
as a basis in this study, with an optimal density is 0.04, we would predict an average of 800 regulators per gene (for a network size that is the same as that of humans; N=20 000 to 23 
000 genes). Current experimental data estimate an inter-quartile range of 29 to 515 transcription factor binding sites per gene (Hurst, et al., 2014. Genome biology, 15(7), p.413.)
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Figure 2 - Median expression 
change of all 10 genes, across 
successive time points in the 
simulation (for a total of 300 
time points) , showing how the 
dynamics of the network 
converges into a “frozen” state 
where all  genes adopt a 
constant expression  (no fluidity 
in the steady state).

Figure 1 and 2 – An example of a 
small regulatory network with 
just ten nodes. Each node 
represents a gene and each 
arrow represents a directed 
regulatory interaction.  When 
dynamically simulated starting 
from a random initial expression 
fro all 10 genes the network 
converges into a frozen state.

Figure 7 – Dynamic fluidity of N=400 networks, using 20 randomly 
generated initial states showing mean proportion of Frozen Nodes (±
Standard Error) against density. Data point represents the mean of 50 

independently generated networks ± standard error

Figure 6 – Dynamic fluidity of N=200 networks, using 20 randomly 
generated initial states showing mean proportion of Frozen Nodes (±
Standard Error) against density. Data point represents the mean of 50 

independently generated networks ± standard error
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Figure 3. Another 
example of a gene 
regulatory network with 
a larger number of genes 
but a lower number of 
regulatory interactions 
per gene. 

Figure 4 - Median 
expression change of  all  
genes  for this network 
across successive time 
points in the simulation 
(total of 300 time points) , 
showing how the dynamics 
of the network converges 
into a “fluid” and always 
changing  state where all  
genes adopt a dynamic  and 
periodic  time course of  
expression.
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Figure 5 – Dynamic fluidity of N=100 networks, using 20 randomly 
generated initial states showing mean proportion of Frozen Nodes (±
Standard Error) against density. Data point represents the mean of 50 

independently generated networks ± standard error
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